Multivariate EMD-Based Modeling and Forecasting of Crude Oil Price
نویسندگان
چکیده
Recent empirical studies reveal evidence of the co-existence of heterogeneous data characteristics distinguishable by time scale in the movement crude oil prices. In this paper we propose a new multivariate Empirical Mode Decomposition (EMD)-based model to take advantage of these heterogeneous characteristics of the price movement and model them in the crude oil markets. Empirical studies in benchmark crude oil markets confirm that more diverse heterogeneous data characteristics can be revealed and modeled in the projected time delayed domain. The proposed model demonstrates the superior performance compared to the benchmark models.
منابع مشابه
Modeling and Forecasting Effects of Crude Oil Price Changes on the US and UK GDP
       This paper proposes a new forecasting model for investigating relationship between the price of crude oil, as an important energy source and GDP of the US, as the largest oil consumer, and the UK, as the oil producer. GMDH neural network and MLFF neural network approaches, which are both non-linear models, are employed to forecast GDP responses to the oil price changes. The resul...
متن کاملAn EMD-Based Neural Network Ensemble Learning Model for World Crude Oil Spot Price Forecasting
In this study, an empirical mode decomposition (EMD) based neural network ensemble learning model is proposed for world crude oil spot price modeling and forecasting. For this purpose, the original crude oil spot price series were first decomposed into a finite and often small number of intrinsic mode functions (IMFs). Then the three-layer feed-forward neural network (FNN) model was used to mod...
متن کاملComparing the performance of GARCH (p,q) models with different methods of estimation for forecasting crude oil market volatility
The use of GARCH models to characterize crude oil price volatility is widely observed in the empirical literature. In this paper the efficiency of six univariate GARCH models and two methods of estimation the parameters for forecasting oil price volatility are examined and the best method for forecasting crude oil price volatility of Brent market is determined. All the examined models in this p...
متن کاملForecasting Crude Oil prices Volatility and Value at Risk: Single and Switching Regime GARCH Models
Forecasting crude oil price volatility is an important issues in risk management. The historical course of oil price volatility indicates the existence of a cluster pattern. Therefore, GARCH models are used to model and more accurately predict oil price fluctuations. The purpose of this study is to identify the best GARCH model with the best performance in different time horizons. To achieve th...
متن کاملOil Price Forecasting with an EMD-Based Multiscale Neural Network Learning Paradigm
In this study, a multiscale neural network learning paradigm based on empirical mode decomposition (EMD) is proposed for crude oil price prediction. In this learning paradigm, the original price series are first decomposed into various independent intrinsic mode components (IMCs) with a range of frequency scales. Then the internal correlation structures of different IMCs are explored by neural ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016